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e A

There are several different classes of differential equations that may be described as
‘integrable’ or ‘solvable’. For example, there are completely integrable dynamical
systems; equations such as the sine-Gordon equation, which admit soliton solutions;
and the self-dual gauge-field equations in four dimensions (with generalizations in
arbitrarily large dimension). This lecture discusses two ideas that link all of these
together: one is the Painlevé property, which says (roughly speaking) that all solutions
to the equations are meromorphic; the other is that many of the equations are special
cases (i.e. reductions) of others.

THE ROYAL
SOCIETY

1. INTRODUCGCTION

The papers at this Discussion Meeting have dealt with differential equations that may be
described as integrable or solvable. These include, in particular, equations admitting soliton
solutions, and integrable dynamical systems. One thread that links them together is, as we have
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heard, the involvement of (infinite-dimensional) Kac-Moody algebras; another is the ‘ Painlevé
property’, which says (roughly speaking) that the solutions to the equations are all meromorphic
(this is discussed in more detail in §2). A third linking thread involves the self-dual gauge-field
equations in four dimensions, which are ‘completely solvable’. The link is provided by the fact
that many (and perhaps all?) of the ordinary or partial differential equations that are regarded
as being integrable or solvable may be obtained from the self-duality equations (or its
generalizations) by reduction. In a sense, they are special cases of the self-duality equations.
Section 3 of this paper is devoted to providing some evidence for this idea.

By the term ‘reduction’, I mean the following: suppose we have a set of coupled partial
differential equations (n equations in n unknowns) with m independent variables. Then we
reduce either by reducing n, or reducing m, or both. By way of example, consider the following
case, where m =n = 2:

<L (¢ = e?—e¥,

i Dw = C’/I—C_qﬂ,

> P : : . o .

ol with [] = 02—02 being the wave operator in two dimensions. Because these equations are

= invariant under translations x+> x+ %, we can reduce by requiring ¢ and ¥ to be functions
O of t only, and so obtain th

23] of ¢ only, and so obtain the system

I 8 y, y . ¢” = e¢—e_’/”

=w Y =el—e 0

Alternatively, because the equations are invariant under the interchange of ¢ and ¢, we may
reduce by setting ¥ = ¢, and obtain the sinh—-Gordon equation

¢ = 2 sinh ¢.

The main point is that in each case, it is the presence of a symmetry that enables the reduction
to be made.
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452 R.S. WARD

2. INTEGRABILITY AND SOLVABILITY

We are interested in certain special systems of nonlinear ordinary or partial differential
equations: special in the sense of being integrable or solvable. The precise definition of what
these terms mean is a little vague. For systems of ordinary differential equations (o.d.es) one
can define integrability in terms of the existence of enough ‘constants of the motion’. A more
precise (and stronger) idea is that of ‘algebraic complete integrability’, which requires that the
equations can be integrated in terms of Abelian functions, and that (almost) every solution
corresponds to linear flow on an Abelian variety (see the paper by Professor P. van Moerbeke).
For systems of partial differential equations (p.d.es), the situation is somewhat more obscure.
There are equations such as the K.d.V. equation, which admit an infinite number of local
conserved currents, and which may justifiably be referred to as ‘completely integrable
Hamiltonian systems’. But there are also systems such as the self-dual gauge-field equations,
which appear not to fall into such a category, yet are just as ‘solvable’ as the soliton-type
equations. Equally, it is unsatisfactory to define solvability in terms of one particular solution
technique, such as the inverse scattering transform, since such a technique has only limited
applicability, and does not cover all the systems that one would wish to describe as being
solvable or integrable.

One property that integrable or solvable p.d.es do appear to have in common is that they
can be expressed as consistency conditions for the solution of overdetermined systems of linear
p.d.es. Indeed, this fact underlies both the ‘inverse scattering’ technique for solving soliton-type
equations, and the ‘twistor’ technique for solving the self-dual gauge-field and related
equations. But the fact that a system of p.d.es can be written as a consistency condition, does
not automatically guarantee that that system is solvable: there are several examples of equations
that are expressible as consistency conditions, but which are believed not to be integrable. It
seems that for the consistency conditions of an overdetermined system of linear equations to
be integrable, one needs that linear system to be of a certain type; but just what the ‘certain
type’ is, has not yet, to my knowledge, been elucidated.

A useful test for integrability is that of S. Kowalewski, who applied it to autonomous systems
of o.d.es (dynamical systems). The criterion is the ‘ Painlevé property’, namely that the solutions
of the equations, as functions on C (i.e. functions of complex time), should have no singularities
other than poles (i.e. that they should be meromorphic). This has proved to be an effective
test for integrability, and, more specifically, for algebraic complete integrability. The idea
(conjecture) is that the Painlevé property implies integrability. The reverse implication does
not hold in general; one reason for this is that the Painlevé property is not invariant under
a change of variables, whereas integrability (depending on how one defines it) sometimes is.
A trivial example is that of a single o.d.e. ¥ = f(x), which is ‘integrable by quadrature’, but
does not, in general, have the Painlevé property. On the other hand, the more exacting
requirement of algebraic complete integrability implies the Painlevé property (and seems,
judging by the cases that have been investigated so far, to be implied by it).

Various suggestions have recently been made on how to extend the applicability of this test
from o.d.es to p.d.es. One idea is to require that whenever a p.d.e. has symmetries that allow
it to be reduced to an o.d.e., then that o.d.e. should possess the Painlevé property. It appears
to be the case that p.d.es which are solvable by the inverse scattering transform pass this test,
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whereas several equations that are believed not to be integrable fail it. But this test seems
unsatisfactory, in that most p.d.es do not have any symmetries at all, and therefore cannot be
reduced to o.d.es.

A better idea is as follows. Suppose that there are d independent variables, and that the system
of p.d.es in question has coefficients that are holomorphic on C?. We cannot simply require
that all the solutions of this system be meromorphic on C?, since arbitrarily nasty singularities
can occur along characteristic hypersurfaces (even for the most benign equation, such as
Laplace’s equation). But the following formulation of the Painlevé property avoids this problem.

PAINLEVE PROPERTY 1. (P1) If' S is a holomorphic non-characteristic hypersurface in C9, then every
solution that is holomorphic on C\S extends to a meromorphic solution on C9.

In other words, if a solution has a singularity on a non-characteristic hypersurface, then that
singularity is a pole and nothing worse. For example, the wave equation ¢,,—¢,, = 0 in two
dimensions satisfies P1, as one sees by considering its general solution ¢ (x,t) = f(x—¢) +g(x+1¢).
In fact it clearly satisfies a stronger version of P1, in which the word ‘meromorphic’ is replaced
by ‘holomorphic’.

A slightly weaker form of the Painlevé property was formulated a couple of years ago by
Weiss et al. (1983). It involves looking for solutions ¢ of the system of p.d.es in the form

o0
p=0" 2 $,0",
n=0
where o is a holomorphic function whose vanishing defines a non-characteristic hypersurface.
Substituting this series into the p.d.es yields conditions on the number a and recursion relations
for the functions ¢,. The requirement (let us refer to it as P2) is that a should turn out to be
a non-negative integer, and the recursion relations should be consistent, and that the series
expansion should contain the correct number of arbitrary functions (counting o as one of them).
In all the cases that have been checked so far, it has been found that integrable equations
satisfy P2 (perhaps after a change of variables), whereas non-integrable equations fail it. To
establish P1is more difficult (P1 implies P2, but the reverse implication need not hold in general).
However, it seems that in practice, P2 is sufficient to ensure integrability.
In summary, then, the Painlevé property (in either of the forms P1 or P2) seems to be a
a useful indicator of integrability or solvability, or both. It is worth also pointing out that the
Painlevé property is preserved under reductions of the kind discussed in §1.

3. THE SELF-DUALITY EQUATIONS, AND REDUCTIONS

I now want to discuss the self-dual gauge-field equations on Euclidean 4-space R%. Very
briefly, the arrangement is as follows. Let G be a Lie group (the ‘gauge group’) and g its Lie
algebra. A gauge potential (connection) 4 is a g-valued 1-form on R*. The corresponding gauge
field (curvature) is the g-valued 2-form F = d4+ [4, 4]. Two gauge potentials 4 and A’ are
regarded as being equivalent if they are related by a gauge transformation

A =Q 1 AQ+01dQ,

where  is a G-valued function on R%. The self-duality equations are *F = F, where * is the
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Hodge duality operator, which maps 2-forms on R* to 2-forms. In terms of the standard
coordinates x* = (x°, x!, 2%, x®) on R*, the gauge field F,, = —F,, satisfies

Fyy = Fy, Ry = — R, Fps = B,

These form a set of coupled first-order nonlinear p.d.es for 4,. They are underdetermined (fewer
equations than unknowns), but this underdeterminacy can be removed by imposing a
‘gauge condition’ such as 4, = 0. (The self-duality equations are invariant under gauge
transformations.)

The self-duality equations are completely solvable as a consequence of the ‘twistor’
correspondence, which relates solutions of the equations to certain holomorphic vector bundles,
and leads to various different ways of constructing solutions 4 (Atiyah 1979; Ward 1981). The
equations possess the ‘strong’ Painlevé property P1, although one has to reformulate P1
slightly so as to take account of the gauge invariance. Namely, the following is true. Let S be
a non-characteristic holomorphic hypersurface in C*, and 4 a self-dual gauge potential that
is holomorphic on C*\S. Let p be any point on S. Then there is a neighbourhood W of p in
C* such that 4, possibly after a gauge transformation, is meromorphic on W (Ward 19844a).

Inow wanttoillustrate the fact that many ‘nice’ equations may be derived from the self-duality
equations by reduction. The first example is obtained by reducing from R* to R®: we do this
by assuming the gauge potential 4, to be independent of x° (say). Then writing @ = 4, and
regarding the remaining components (4,,4,,4;) as defining a G-connection on R3 the
self-duality equations reduce to

D® =Dx A,

where D@ = d® + [A, @] is the covariant gradient of @, and D x 4 the covariant curl of 4 (the
dual of the curvature form). These are known as the Bogomolny equations, and are relevant
to static magnetic poles (see the paper by Sir Michael Atiyah (this symposium)).

My next examples involve reduction to two dimensions (R?). Leznov and Saveliev (1980)
showed that one such reduction produces the Toda field equations

D¢a — eXp% Ka.ﬂ¢ﬂ’

where [] is the wave operator on R?, & and # label simple roots of the Lie algebra g, and K.p
is the Cartan matrix of g. Reducing by one more dimension yields the ‘Toda molecule’, an
integrable dynamical system.

Let me exhibit another two-dimensional example, one that does not fall within the above
scheme. Let the gauge group G be SL(2,C), so that the 4, are 2 x 2 matrices, and suppose
them to be functions of x® and x' only. Then reduce the number of dependent variables by
taking 4, and 4, to be diagonal, while 4, and 4, have the form

[CXP ((-)_F%i¢) - (01 %i¢)]

(¢ being a scalar function of x° and x'). This reduction is consistent with the self-duality
equations, which reduce to

A, +id, =1

Ap =sing

[ 120 ]
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(A being the Laplacian on R?), together with equations on 4, and 4, which need not concern
us. In other words, the self-duality equations reduce to the elliptic sine-Gordon equation. (If
we had begun in Minkowski space—time rather than Euclidean 4-space, we would have ended
up with the usual hyperbolic sine-Gordon equation).

A comprehensive analysis of reductions of the above kind has not, as yet, been made. The
possibility exists that many other soliton equations, in two or more dimensions, may turn out
to be special cases of the self-duality equations; but this remains to be seen.

A different family of reductions arises if we rewrite the self-duality equations in a different
form (due to C.N. Yang). In terms of the four real coordinates x%, define two complex
coordinates y = x%+ix! and z = x2+ix3. If 4, is a self-dual gauge potential, then there exist
g-valued scalar fields H and X such that

A,=H79,H, A,=H"'3,H,
A, = K10, K, A, =K19,K,

where 0, denotes 9/0, and so forth. The integrability condition for these expressions forms part
of the self-duality equations. The remainder of the self-duality equations is as follows: put

— HK-1
J = HK™, and then 9y(J719, J) +8,(J719,J) = 0. (1)
So we obtain a G-valued scalar field J satisfying (1); conversely, a solution J of (1) determines
a unique self-dual gauge field (unique, that is, up to gauge transformations; for the field J is
gauge-invariant). So (1) is a neat form of the self-duality equations; its main defects are that
SO(4)-invariance, which was present in the original formulation, has been lost; and that the
geometrical interpretation (in terms of connections and curvatures) has also been lost.

It is worth remarking that for the group G = SU(2), Jimbo et al. (1982) have shown directly
that (1) satisfies the Painlevé property P2.

Equation (1) has many interesting reductions: one is obtained as follows. Require J to depend
only on § = Im(y) and p = 2|z]| (i.e., factor out a translation and a rotation, both of which
are symmetries of (1)). Equation (1) then becomes

(I 10 ) +3,(J710, J) +p 1 1D, J = 0. (@)

Then let the gauge group be SU(2), so that J takes values in SU(2), and impose the further
constraint that each entry in the 2 x 2 matrix J be real-valued. With this constraint, (2) is (a
form of) the ‘Ernst equation’ of general relativity, the solutions of which correspond to
stationary axisymmetric solutions of Einstein’s vacuum equations.

Another reduction of (1) is obtained by factoring out two translations, namely by requiring
J to be a function of x° and x? only. This gives

0,(J719,J) =0, (3)

where the index u takes on the two values 0 and 2, and the Einstein summation convention
operates. Equation (3) is the well known ‘chiral field equation’ in R2. It, in turn, reduces to
other equations much studied by theoretical physicists, such as the equations of the CP™ model:
if we require that J satisfy J2 = 1, so that it can be written as J = 1 —2P with P2 = P, then
(3) becomes [P, AP] = 0, which is a form of the CP" equations (Din e al. 1984).

There is one further family of reductions of the self-duality equations that I want to discuss,
and this involves reducing all the way down to one dimension, i.e. to o.d.es. Suppose that the
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gauge potential 4, is a function only of #°, and choose a gauge in which 4, = 0. The self-duality
equations reduce to Ay = eyl Ay, 44, (@)
where ” denotes d/dx®, the indices 7,7,k run over 1,2,3, and ¢;;;, is the totally skew tensor
with €,,, = 1. Think of ¢,k as indices in the Lie algebra so(3); then A4 takes values in
o =s0(3) ® g, the tensor product of the two Lie algebras so(3) and g (considered as vector
spaces). The equations (4) are known as the Nahm equations.

Note that o/ has the structure of an algebra, with the multiplication operation being the
natural one induced by the multiplications on the two Lie algebras. Denote the product of
A,Beof by (4,B)e . The algebra & is commutative, but not, in general, associative. The
equations (4) are simply the natural flow on this algebra: namely, 4:R->.o/ satisfies
A = (4,4).

Reduction of the number of dependent variables is effected by simply restricting to a
subalgebra # of &/. For example, take g = so(3), and let # be the ‘diagonal’ in so(3) ® so(3).
In other words, if so(3) is generated by o, with [0, 0,] = 0, etc., then # is generated by
{o,®0,,0,® 0,0, & 0,}. The flow on this three-dimensional algebra corresponds to the

S =2gh, g =2/h, K =2fg,

which (after rescaling) are Euler’s equations for a spinning top, a classical example of an

system

algebraically completely integrable system.

I conjecture that every algebra S of the type described above (i.e. a subalgebra of s0(3) ® g
for some Lie algebra g) gives rise to an integrable system of o.d.es. It may also transpire that
a quadratic system of o.d.es (i.e. f}, = Q4" f; f, with Q%" constant) is completely integrable only
ifit corresponds to the flow on such an algebra #. For example, preliminary investigation seems
to indicate that the integrable cases of geodesic flow on SO(n) fall within this framework.

4. CONCLUSIONS

The main point of this lecture has been to emphasize the commanding position occupied
by the self-dual gauge-field equations among integrable or solvable systems. It seems appropriate
to look for common features among the plethora of such systems; and the relation between two
systems of one being a reduction of the other, is the most obvious relation to look for.

Let me mention some variants and generalizations of the self-duality equations. First, there
are the self-dual Einstein equations, which refer to four-dimensional Riemannian spaces, with
self-dual conformal curvature, and satisfying the Einstein condition R,, = Ag,;,. These are
completely solvable in the same sense as the self-dual gauge-field equations (Penrose 1976; Ward
1980). Also completely solvable are a host of higher-dimensional (i.e. dim > 4) generalizations
of the self-duality equations, many of which reduce to the latter equations. All the possibilities
in this regard have not yet been fully analysed, but a preliminary account is given in Ward
(19846).

I shall end by listing some questions that seem to me to be interesting. First, is there a clear
definition of ‘integrable—solvable’ that includes all the examples I have mentioned? Two
possible approaches to such a definition might be the associated linear system, and the Painlevé
property. Secondly, how many ‘master’ integrable-solvable equations are there, in the sense
that all integrable-solvable equations can be derived from these by reduction? It is possible
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that there may, in fact, be very few such basic equations. Thirdly, is there a connection between
integrability and supersymmetry? It seems to be the case that solvable field theories admit
supersymmetric extensions; is this a general phenomenon?
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Discussion

M. TaBoR (Department of Applied Physics, Columbia University, New York, U.S.A.). Could Dr Ward
define more precisely the term ‘non-characteristic hypersurface’ and indicate how his version
of ‘Painlevé property’ might be proved for, say, members of the Kadomtzev—Petviashvili
hierarchy; for example, the K.d.V. equation?

R. S. Warp. My interest is mainly in relativistic equations (i.e. equations invariant under the
Poincaré group in d+ 1 dimensions, for any d), such as sine-Gordon, Yang—Mills, and so forth;
in such cases, the characteristic hypersurfaces are simply the null hypersurfaces. On the other
hand, for the K.d.V. equation U+UU+U,,, =0,
the characteristic lines are ¢ = constant (these are, for example, implicitly excluded by Weiss
et al. in their definition of P2).

As to how P1 could be proved for, say, the K.d.V. equation, the answer is that I do not
know: it might be very difficult. One ‘almost’ has a proof for the sine-Gordon equation, since
it is a reduction of the self-duality equations. (I have to say ‘almost’ because P1 only holds
for the self-duality equations in certain gauges, and it is not clear a priori that the gauge one chooses
when reducing to the sine-Gordon equation is one of these.) Perhaps something similar might
work for the K.d.V. equation, if one could see how to obtain it from the self-duality equations.
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